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A VORTEX MODLE FOR TREATING THE FLOW ON
ROTOR BLADES OF A HELICOPTER

W. H. Isay

ABSTRACT. On the base of unsteady vortex lifting-line
theory an approximate method to calculate the loading distribu-'
tion on rotor blades in forward flight is presented. The
theory takes account of the vortex wake geometry for non-uniform
(example trapezoidal) flow through the rotor-disc as well as the
effect of rolling up and contraction of free tip- and root- '
vortices is considered. Calculating the blade-circulation
distribution requires careful attention to the. case where the |
blades pass| through the rolled-up tip- and root-vortex of the
foregoing foil.

The appendix of this paper is concerned with the
preparation of formulas to predict the compressible acoustic
pressure field of the rotor.

: *
1. INTRODUCTION AND SUMMARY /283

Various approximation methods are given in the literature [1], [2],,[3]

for calculating the flow on rotor blades. They can be used for various (periodic

or aperiodic) flight conditions, depending on the factors ignored. The| |
available results are not completely satisfactory for any of these methods, and
it therefore seems desirable to improve the method by considering, effects which

have not been considered up to the present.

The linearized extended lifting line theory has been developed in the most

consistent way as far as the theoretical aspects are concerned. This is true
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even though the simplifications which it contains (ignoring the deformation of the
free vortex surfaces due to the nonuniform rotor flux and the flapping motion of
the blades, contraction and rolling-up process of the free transverse vortices,
the oblique and reverse flow at the blades for large propeller moduli) means that

there is a considerable abstraction of physical reality [1], [2], [3].

In the present paper, a modified vortex model is given on the basis of the
lifting line theory. This makes it possible to include some effects which were
not included in previous analyses. Among these, we have the nonuniform flow
through the rotor plane. In particular, we will now investigate the influence of

the rolled-up and contracted tip and hub vortices of the leading biade have on|

passes through them.

The flow boundary condition at the rotor blade leads to integral equations
with new types of singularities, and this paper will basically deal with the theory

of solution of these equations.
2. CONCEPT OF THE VORTEX MODEL

Let us assume that the rotor has N blades(n:=(L],...VN;7lyand that there is

a completely periodic flight state at the velocity wgin thef@i?géfiaﬁ'Bf-fﬁéfﬁééé:wm‘

tive z axis. The blade 5 == 0/is assumed to be the target blade at which the flow
boundary conditions are to be satisfied. In this aircraft-fixed coordinate system,

L

let z = 0/ be the rotor plane . Therefore wy is the incident flow velocity in the
z direction. 1In addition,‘uJ is an incident flow in the x direction ( u§<§uﬁ)

(Figure 1).

(l)We will either use Cartesian coordinates x, y, z or cylindrical coordinates

X, Y =T cos a, zZ =71 sin'a. In the same way, we will use s instead of r and ¥
instead of ¢/ as the integration variable for vortex lines. w is the angular velo-
city and ®a=¢o+H 2an/N| characterizes the instantaneous angular position of the
n-th blade. R{ and R are the inner and outer radii of the blade. Finally

i»=ue,+veu+ive,=uez + Ve,+ We,(

refers to the absolute velocity referred to the aircraft-fixed coordinate system.
Otherwise, we will use the same notation of [1].
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Fig.vl. Coordinate system of the rotor Fig. 2. Trapezoidal flow.

N = 4).

The free transverse and longitudinal vortices are located within an oblique
cylinder behind the rotor which extends to infinity, just like in the linearized
theory [1], [2], [3].

Assumptions regar@ing the geometry of the free vortex surfaces will be made
for the individual rotor blades. Common assumptions will be made for the wake

regions as dictated by the physics of the problem.

Without considering the contraction and rolling-up process, a trapezoidal

flow through the rotor plane in the x direction, such as

8

ko(8, y) = koo + koy-8iny’, Ky = const; ' 'k, = const; 1
2 . , b; (1)

to the free vortex surfaces having the shape (Figure 2):

7y = 9 ko(3, @n -+ ) € + 8 c08 (pn + ) €, + [5 5in (g + v) + ky y] €& (2)
where ky =const; (0<yp<oo; R <s=<R). ‘ ' _
fwo‘*'wu’f'wt, ~ W ) b
ws+ Vo + Ve o

For a constant flux, we may assume k0 = const. If there is no vortex motion

through the rotor plane in certain regions, then we must set k., = 0 there.

0

The vortex axis vector of the free transverse vortices is given by ids; =g—r’dzp .

For the free longitudinal vortices it is . ds, =%’ld,g .
. s
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zoidal flow.

We will calculate the velocity field induced by the vortex system of the rotor

along the 3/4 profile cord line of the target blade. It is required to satisfy the

flow boundary conditions according to the extended lifting line theory (Figure 3).

The blades have the cord 2 r o(r), and their 3/4 line is given by x = O

/y = r 008 (¢ —}-a),] z = r8in '(ip,,' +a), Pn =0y + (2nn/N) (n = 0’ target blade).

a)

We will replace the blades by bound rod vortices having the circulation

TI's,¢n), n=0,1,...,N —1) arranged in the rotor plane x = O at the 1/4 blade cord -

linelr The induced velocity field along the 3/4 line of the target blade is then

given by
R | : s 2zn d | _
1 N:l o ) 7.8In —T ef 8 ‘/
or =4_7Z"%'0 r(s, (pn) ' 2xn\® " ‘(3)
i ‘ l/r’+s”—2r.scos(a——T)‘
b)

We will select the following model for the free transverse vortex:

For the blade n = O (target blade) it is assumed - that the transverse vortices

remain behind the blade up to about 1/4 of the blade cord (that is up to ) z2al“)}

4



without flowing through the blade plane x = O (linearized wing theory). After
this, they leave the rotor plane (Figure 4) according to the trapezoidal flow dis-

tribution (1).

For the other blades (n # 0), it is assumed that the transverse vortices have
already been rolled up into a tip vortex (intensity + I'n (pa + y)jat 8 =0 < Ry), and
that there is a hub vortex (intensity TTI%Z¢04‘¢»’ located at a==s§)>-jgﬂ. '[@]is
the maximum value of the bound circulation which corresponds to the instantaneous
angular position @a +y| of the blade.(z) The radii @wﬂand ;gﬂcan be adjusted without /285

difficulty to a wake cont#action obtained from experiments. (Figure 5).

For the blade n#:jV—;JJ which preceeds the target blade being considered, we
will assume that the tip .and hub vortices remain approximately 1/4 blade chord
behind the target blade in the rotor plane (Figure 6) and only then do they become
pushed away corresponding to the trapezoidal flow (1). This vortex model also
corresponds to the experience that the tip and hub vortices of the preceding blade
n =N — 1] greatly influences the flow conditions at the blade n = O being inves-
tigated. Often the latter passes through these rolled-up free vortices. One topic
of this paper is to investigate this penetration effect and its influence on the
1ift distribution of a rotor blade. The vortex geometry described above is found

to be especially suited for this purpose.

For the other blades n = 1 ton =N —2|/we initially assume a flux according to
equation (1) for the tip and hub vortices. The influence of these vorteces\on the
1ift distribution at the blade n = 0 is smaller and penetration effects will hardly

occur.

Under these conditions, one finds that the velocity field induced by the free
transverse vortices at the 3/4 line of the target blade 'z=0,y =rcos(p +a)

z= r sin (<p;+b)c\)] is given by:

(Z)Ihstead of the maximum value, another circulation value can be substituted for
‘fd, which is better suited to the true flow conditions (for example, one taken
from measurements). Instead of a trapezoidal distribution, any other flow distri-
bution can be used.
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Wite
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I'n (rp(, — 27;5 + 1,0) [Integrand

: 2 A .
- ky rcos (pp + o) -+ Ey gﬁ{,”_, cos (‘Po, _jvy_z +1p) + ki 8 ysin (% ~-N +w)] dy e‘m —
! * . - I g h

o0 ‘2‘: ' PRI Y .

in f In (%‘_,—NE -Hl’) [(%m) 1)? + (1' cos (gy + &) —353)—1093(¢o -—Tv‘.-*"#)) +
) _ ©o\2]-32

— s sm(qao—-?'—ﬁ +w) ——Ic,.,cp)] X -
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1

2
1003(‘1’0"1’*"1!’)’*'

+ kg a_y y Bin (% _—— +w)}cz +[( 8P, sin ((p(, +1p) — rsin (g, —}—oc) o y))

e T

2 .
W .x a‘; xP-1 — (k + a1 cos (% L ip)) %y ]ey + [((r 008 (g -{Ta)‘-—
. . . 9 o
‘} — 859) 1 CO8 (‘Po 2-1775 +1p)) 3a1p x‘g’_ - gg) 1 s‘m (%— —l—vﬁ -|— y)) x(g’ 1] e,} dw - o
0 ) ' v , . B
L~ i L'Fm( — +1p) [Integmnd Wlt’El .s“’ ] dy) R ' '
,wo‘)"'“' C . | ,

b) Blade crosls sec~

tion r = const.

@)




| ' ' A | TS o s T
“with 3 Wy = (p — WM — o) ko (sﬁ?’_l; @ — 2z +¢) : ‘simil'arlyl xﬁfv’ 1. ‘ “ . .
| Smiterly) »
U
j ! ”21 P = Z f Lo (pn + o) [{ ”(0))2 + ((" cos (% +a) — i) cos (fP +9)? +
\ -
i W
| T ) 21-3/2 }| (4(® (0) 2an
‘ ' + (r sin (g + ) — 8 sm(q:,,ﬁ—y;)——hw)] (882 — r & cos oc—np———l—v-———
- "'* r cos (o + &) + ka 8(0) cos (pn + y) + ky 8y sin (@, -+ w)] e; + ‘ il
L sy
| ‘. +[(3ﬁ” sin (@, + 1/)) — rsin (% +0‘) + k* 'P) %5‘&)) - (k* + 89 cos (pa + V’)) "5?’] e +
lii , : . 4 [(r cos (@ + o) ~— s“‘) cos (q),. + 1p)) x(") — 80 sin (@, + ¥) x(")] e,} dy — ,
! — 3 f Ty (g +v) (Integrand y_l_tI}J Ty T
# n=1 p=0 ) [
withi 6] =9k (5, @0 +9) 5 o) =p ko (s, % fu.
; Ry 20
o L [ [ F g+
du v = e . ——«————5: [(r cos (@ + a) — 8¢o8 (py + 1p)) |
, fie ©
+ (Fein (o + o) — 8 5in gy + 9) — ky $)T17O [7 8 08 (x s
[ . rios (o + &) — kg 8 cO8 (P + ) — ky 89 8in (@, -+ )] dyp ds e, +
oI (s, 00 + -
L ty= ——(—a"j';’—l’[(xo)a + (r o0 (o +a) — 1 cos (g, + p))? + ey
(‘L ' Rt 2a .
} +: (r sin (py +«) — s 8in (g, + lp) — Ky p)?2]732 X .
X {[r & cos (:—y) — 82 4k, r cos (¢, + &) -5 ky 8 cos (@) + ) — ky ¢y sin (@, 1 v)] €. +
—l—[(r sin (gy + o) — 8 8in (@ + p) — ky w)-a%’—}- (kx + & cos (g, + ) xo]e,, +
. a . ' s ‘ .
| + [(s cos @y -+ ) — r cos (g + ) a—;" + s sin (@ + 9) no]e,} dy ds ,
Swith s =(p—2a) k(g +9)|
In formula (4), 0)1 and ‘¢ )] indicate the angles at which the tip and hub vortices
of the blade n = N — ljintersect the 3/4 line of the target blade n = 0. The cor-
responding radii are called Ty and LR According to our definition we then have
(Figure 6; Figure 8):
r .c(,)s,,v_,, e g, ,.,,(;;-.. o )
o (g0 + xg) = 8x"-1 cO8 P = F¥) .
. 0 2n . %o =0‘(’0)"
| To BIN (9o +ag) = 8% sin (‘Po - + 11)(0)) + Ey pf? ' 7N
¢ CO8 .(% +aq) = sy co8 gy — Fﬂ +%‘)) ; ‘ ‘ : o
. : on - o¢ =0i(r) ..
ro8in (@, + o) = s, sin ((p - + qu)) + ky 1'09) :




c)

For the free longitudinal vortices we will assume the following model: for

the blade n = 0, the vortices are arranged in the rotor plane up to 1/4 of the blade

chord behind the blade (that is, up to w =2d ) (linearized wing theory). After

this they leave the plane x = 0 (Figure 4) according to the trapezoidal flux dis-

tribution (Equation 1).

The longitudinal vortices of the blades n =1 to n = N'—2/, which do not have

a large influence on the flow boundary conditioms, are extended after their crea-

tion outside of the rotor plane in the x direction according to the trapezoidal

flux law.

The following two models will be discussed for treating the longitudinal vor-

tices for the blade » = N.— 1] preceding the target blade.

Case I: Vortex arrangement just as for the blades n =1 to ﬁ::]V——Z].

Case II: Just like the model used for the transverse vortices, the longitu-

dinal vortices remain behind the target wing in the rotor plame x
They are blown away according to the flux given by equation 1)

= 0 up to about

1/4 blade chord.

in the x direction (Figure 6).
the free longitudinal vor£ices at the 3/4 line of the target wind x =0, y =

Using this concept, the velocity field induced by

ir cos (gy + &), z = rsin gy +&)| is given by

r R=1- ‘
| o, =3 v ‘

5‘ e .

I 1 [ [ 8@, ¢ L | |
i! v\ =i »~~££-a—g—w [(r cos (gp + ) — s cos (g Jﬂ/’))a +

1’ » R 0 . )
" (rsin (g +.) — 8 8in (@ + ) — Ky 9)?] 72 [r sin (o — y) —ky p 008 (g +9)] dy ds €, +
. Ry oo . .
. 1 ol (s, 9o + ¥) C v
L tam | | T g Ml leeslpte) mecoslp ) | ®
. R 2a . - .

.+ (rsin (g + ) — 8 8in (o + ) — K )% -2 {[r sin (o — ) — by ¢ cost((p‘0 + )] e, +

+[(s sin (g0 + ) = 7 8in (o + ) oy ¥) 2 — sin (py + 9) ”o] e +

| +[(r cos (1130 + &) — 8008 (@0 + tp)) % + co8 (g + W x;;]e,} dlp ds ;

/287



with *y = (w—2tx)7f (s, %+'IJ)

i aI’ n
?Fﬂ““z%ff‘iiiﬂwm Vm%+ﬂ—wwm+W’
| ' " I A

[

i. . .
F,  + (rsin (po+-o)— ssin (% T ) —ky )] {[r sin (oz —yp— 2—;3) - k.‘w cos (pn +w)] e+

. (9)
+[(s sin (g, + ) — rsm (9o + &) + k, w)T — gin’ (q),, +1p) x,.]e, +

Vo

1\ +[(rcos(%+o¢)——acos(q;,,-f—y;))—--{-cos(%.{.w)xn] }dwds, .

withix, =y k(8. 0n +9). .

. ""'*"’N-lal‘ 8, +V’) L y . g .

,,_,__f I B -
afPo ‘ o - ’

\ ]

. L 2732 .
: +(rsm(<po+a)-—ssm(fpo——-{-vp) \y;)] X
\‘ 1 t . ! .’ . .
) | :-l >< [r sin (oc +—N-r - y)) — ky 1 cos (% - _JVn +1p)] dy ds e; + N

L A (T N _— . N
ST [(%zv 1)ﬂ+(rcos(¢po+o¢)—~a¢3os( ———+ )) +

' 1
PR ¥ .-
. ! Re at-¥y—y

o 2 3-8z ]
(rsm(% a)—-asm(«pv———}-w)——k,,w)] X .
_"~><{[rsm o¢+-——1p)——k*tpcos(%—--—-i—y))]ez-{- ’ ‘ v'.

. +[(”m ,,,0___+1p)—-rsm(q?o+oc)+Ic*w)a

(10)

.' ‘ : 9 . ‘ :
§ (9’0 _‘Fn + 1/1)%‘\'—1]% +

v L 2x a ' 2 . .
i; .k (rcos(qoo-i—a)-—scos(%———-}- )) i 1+°°S( —TH‘F’/’)”N—l]ez}d’Pd*";

with

Case ,']'Z_IT.‘

r!’x;v_l =y ~a ¥y k"(s’ mo w)-

In Case I, i;}f’“”‘can be taken directly from Equation (9).

1
The angle Yy_,| in Equation (10) is defined by the singularity of the integrand
of the first integral. The latter becomes singular when y = Yy_, and Iq:ﬁ'j{,_,j .

According to definition, we then have

/288



7 co8 (py -l- ) = 8% cos ((pn‘ — —21—; -+ Y’,v».q) ;
9 (11)
r8in (@ ++ o) = sk~ sin (q)o _Wn + Y”‘"l) + ky Pyo1.

This specifies the velocities induced by the vortex system of the rotor at the tar-

get blade.

Finally, according to convention, we will call B the flap angle of the blades

and RB is the distance of the flap joint from the rotor axis. w(r— Ry) gg is the
L S 0

flapping velocity. Also 60J is the inclination. angle of thei profile skeleton line

at the 3/4 point with respect to the :(r ¢)axis (Figure 7).

The flow boundary condition is (Figure 3):

[ r -+ wycos (@, + «)] tan &(r, gg) — %o -+ (r — Bp) w%
. . . 0

= up S up, + g — (Vi + Vi + Vo) tan dy(r, ) 5 | 12)
(Ri=r= Ry 0 i< 27) (Vv = — v sin (g + ) + w cos (p, + o)) .

After substituting the induced velocities, Equation (12) results in an integral

equation for calculating the blade circulation.

The two flux constants kOO and kOl must be determined from an approximate cal-
culation according to one of the known simple theories before Equation (12) can be
solved. It can also be estimated. These values of k00 and kOl must be tested after
solving the integral equation and after determining the induced velocities. If

necessary, iterations must be performed.

3. TINVESTIGATTION AND TRANSFORMATION OF SINGULAR KERNEL : /289
PARTS AND BOUNDARY CONDITION INTEGRAL EQUATION

The representations (3) to (6) and (8) to (10) of the induced velocities
already contain expressions which occur as kernels of the integral equation - accord-

ing to the boundary conditions (12). Therefore, we will not write theﬂ down again.

First of all, we will give a summary of the structure of these kernel compo-

nents and will then develop a suitable solution theory. We must pay special

10



attention to the influence on the circulation distribution of the fact that the
considered blade penetrates the rolled-up free transverse vortex of the preceding
blade.

First of all, the bound vortices according to Equation (3) as well as the sums

N-2

. N2
Sep, 5o
n=1 ?l=1

according to Equations (5) and (9) only result in continuous kernel components

in the integral equation. Therefore, they must not be discussed.

For the velocities o, v{fi 1, o), of¥-1l ,

are always continuous. This is a result of formulas (4), (6), (8) and (10) and is

the integrands of the second integrals
a direct consequence of the physical vortex model used.

" 'This means that the first integral components of the last mentioned velocities
must be investigated in detail. They only contain an x component. These will be

given the notation (ug’)ﬂI , etc.
a)

We will consider the target blade n = 0.

:

The denominator of the part (ug’) %yi},’?‘)J vanishes for prescribed target point

. The quantities $i and ¥ are de-

coordinates r and ¢, + cx(r)then s =g¥and p =Y,
termined by the following equations:

r 008 (py + &) = 8 cos (p, + W)

rsin (g, + o) = s¥ sin (gy -+ Fo). + kx ¥y . (13)

We will develop the numerator N and the denominator D of the integrand of the part

(wQ - u}f’))] in the vicinity of the point (13). We will use the substitution
p=Y+x., s=sof+ o|

after some elementary transformations, if third order terms are considered in the

numerator and second order terms in y and ¢ are considered in the denominator, we

find:



D = [0® + 20y ky sin (g +.¥) + 1* (8" + &2 + 2 ky 58 cos (g, + V) _.] ©14)

In a similar way, using the relationship (13)+

' 01" (s, o + 'V . B | . N »
N'= — ( ‘Poag ot ) [o (s3 + ky cos (go + ) + ot +5 2 5'5 (8% + &y cos (py + !po).)} _" (15)
311(8»97 +l’/ +x) . . ! - . C o

- 03% [ (8 + R cos (o + Wo)) — 2% oy 8in (@ + ¥4)] ‘

We will now introduce the following abbreviations:

Ag =82 I + 2k, s§ cos (g + Wo) 5 By =Fa sinA((po + Y’o).; (16)

Ay = (o8t ky cos (o + Fo))* = Ao — Bi

In order to obtain an overview of the values of s and '¥|as a solution of the

Equations (13), we should consider the fact that in the limiting case ky — Q we

have v
Bd=r; Y=« :

o ' @an

If we now consider small propeller moduli ~Ic,.,/Ro,| just as in the liﬁting line theory

of the rotor and if we assume that there is no reverse flow, then we have

Tk cos (g + &) >0,' for all blade target points. If we also consider the fact that

ﬁa’{l) , then it is appropriate to solve Equation (13) in the linearized form. We

obtain
.s*~ ko 1 o 8in (@y +0t) - ro
0 AL — e S Y, =~ , .
r + Ky cos (@ + ) r+ k, cos (q)p +a) (18)
It follows from (18) that
Ao =1+ l«.:*'éos”(qio +a) — kya sin (g, + «) —{-lterms (k2, a"’)..!
which means that when r-,+ ‘k,.-,.co'sv (Po -‘i:ti), >.0] s ‘Ao‘>_qwill remain in effect.
The singularity produced by the zero s = s,y = ¥|in the denominator of the /290

kernel component n = O depends on the instantaneous blade position wtj . The re-
lationship is relatively complicated, because values of r and "(po‘:]exist (3) for

which §§ > R or S3< R,

. This means that the singularity disappears for short

time intervals (that is for short \(}n;,:)intervalsﬂ.l This is because s and r can only

1

€ 'g;,,_;.;ma{,/é] and ,'SAIL%J as well as for g 4 aw~nj2 and '2—3; .

12



take on values between Ry and R.

The solution of integral equations containing such kernel singularities be-
comes very complicated and laborious. This is especially true if several singu-

larities of this type occur and if they are of various types.

We will find that such singularities are also contained in the kermel part of
the blade 7?3;—‘?71_2\77:‘— ;f . In this case, an exact analysis is even more necessary than
for the blade n = 0, because the value of k, ‘l’;w_',]in Equation (11) is considerably

larger than that of k, ¥W,)in Equation (13) or (18).

Therefore, it seems appropriate to carry out the analysis of the part
f(d8’>+u§?>)J using the assumption k, = O based on no reverse flow along the blade when
k, is small. In this case the kernel singularity is given in the simple form an.
From Equations (6), (8), (14) and (15) we obtain the following lucid representation:

Ry e o

Part w('ug") ,+ uM) = 417; ff {[r2 488 — 218 cos y]-32 [3F(8, Yot + %) (r8cos gy — s3) —
\ . ‘ : . : + \ ' .

. 08

’
Ry —a

-

e taty) ™ 3 prir—s)
322y - (0= o2 ””’2(1+z(r——‘afaw)x

x[a_llﬂpﬂr_ﬁz) (, (r—8) — (r — gLy ch) ol g0+ +7) } dy ds -+
0s 2 L a(po . . .

+~f{ f[(,_s)a+,a 2~ s/2(1+g (x’r)(r;:g)xz)x ER

Lk (“”¢°+°‘+%) | 1 oL (s, +oc+x)
L e """f””‘“z‘"?‘z) Fra— - | a9
! -'_( 2 +_1_1n.|*‘"8| oL (s, @ o) 2 Ir—s 631“ (8,%-1—0;)](
3 r—s 1. 2ra % AT Zra ops J
3 TR : _ ‘ =
Vo1 Vs 1 3"1’(8,% +0‘) Ir —s| ds
i 4n‘/‘1"\(8:% +Q‘)ﬁ+% —a;aT%———(r-—— )[ Tr—o‘—_l];_{_f_
P : B ’ L '
1 ol (s, gy + &) \ : -
‘* +§Zf<T 2s (8"”°+"‘)) ok : S e
,,,,, T o - ~
13



In formula (19), the int_egrang of the first double integral is continuous and
vanishes at the point y =('))and s =r. Using the integral formulas (74) to (81) from
Section 7, we also find that the integrand of the second integral with respect to

s takes on the following value for s = r

] (_1_ L' (r, o - ) +gaﬂl'(r,wo + o)

ol Mo
4a\2r or r? LA ) + 00

This means that it is also continuous. The remaining terms are partially trans-
formed by means of partial integration, so that the singular kernel part in the

last line of (19) becomes clear. We have assumed that
T(Ry, po) = T(Ry, o) = 0 (20)

‘[\.See Section 7; Formulas (82), (83)].
b)
Leading blade # =N —1, longitudinal vortex.

We consider the Case II according to Equation (10), because in the Case I the”

integrand will be continuous anyway.

The integrand of the part (u‘(,{"'-_lv)j in the Case II becomes singular for the spe-
cified target point r, @ +a(r) when s=s%_ 4 and y = ¥y_,Jaccording to Equation System
(11). 1In the vicinity of this point, the denominator of the part (u‘f’"’)lhas the /291

form (14). It is only necessary to replace a(ﬂ by 33»:,'_‘1} . on) by WN_I] and (}p_+ on'))

by (% __.ZIVZ‘_.;_ ',"v"'),r We also find the following for the numerator

ar(\?:(Po—'lvn"i'ng—l +2 , . o '

o * 2 4 ) -

e nahls R
. . 2 ’
— x3 ky 8in ((po ——I—VJ—Z + ‘I/N_l)] .

(21)

\
1

If we assume that at the considered target point r,g, 4 ofthere will be no anomalous
concentration of free vortex elements caused by vortex deformation, then the values
jﬁa:é}’vq] and y =¥y will describe an isolated singularity of the denominator.
This means that gjas well as y| must vanish (y = T&:‘1'¥'x;a’=:"a§;1+a);. Since the

main part of the denominator has the follovwing form for small Ao‘] and y ‘

14



. 2m ' * 2 9 '
[aN 181n(%~———+ EIN_l)x —cos(%———-—l- Wy 1) ]+ .

{ 2
+ [sN_l cos(%——-—-}- Yy_ 1)7( + sm(% —— + ¥y 1)0 +k.. x]

then the following determinant must satisfy the condition

(22)

8N~ 1’*"5* 008(%-——+ !luN 1)>0

if the zero point g”—_-_-v()} and y =01 is to become possible. The relationship (22) is

not important for the further transformations.

Equation system (11) can be solved for small k, values (i.e., without reverse

flow at target points) using a linearized approximatiom, if products of the type

are first ignored. We then obtain

1 27
%y — f)(!f’zv—l ——NE "‘0‘)

'k* r(%—vj—t +oc)sin (@o + &) ' ': o : _ ( +¢x) cos ((p0 + &) (23)

Wy 2 e
7'+ ky cos‘(?’_q“l'd‘)_ : ‘_ ,N~1_~N r + ky cos (‘[’9_+0‘)

;?.I*V—l =r—-
The approximate solution (23) is of course less accurate than the corresponding

relationship (18) for the blade n = O. Nevertheless, (23) can be improved by

the angle !I’N 1] is considera-

means of an iteration. Since because of (oc + N) >o‘2

bly larger than ‘I’;J , it is no longer permissible to ignore k, (different from the
case of the blade n = 0) when the part (Aur(}"_:i)i)l is transformed or is set equal to

zZero.

Using the abbreviations _

AN—1—~8N 1+ +270..81v 1003(77 "‘F?"I'YIN-—I)a

BN—I ; k* sin ((po —_ —z -+ YIN_]_) B

2n 2 . .
AN 1—(3N 1+ ke cos(rpo—-———{—‘l )) = Ay_y — By
we obtain a formula which is similar to Equation (19):

Part

. TRy, —a ’ ) . T
) 1 : . 2 . 2
(uf 1) =;1‘;f f [(7' cos (py +a) — 8 cos(% "jvy_t + ¥y-1+ Z)) + (24)

Iy —~¥y-1

. . R 27! 27-8/2
+(rsin<«po+a)—ssm(«po—jv—+%-1+x)—k*(%_1+x))] x.

15



_><[fsm(%#ra)GOS(qoo—Fn-F‘I’N-l+x)—r008(¢o+a)81n(‘¢oj—l\,f+Y’N_l +x)—

: ' a ’ .

ar(& ¥ — 22 +'WN—1 -+ x)
e 'dxds——

—k (Pn- 1+x)005(%———+'1’1v 1+Z)] aqo
0 -

| ‘ 3Z8N 1BN—1+0x’(8N 1—24x5_4)
- 2 2 3/2
| f[a +2oxBN b ) (1 a2 )x

. : S (292
Lo . 317(0, @ —-—1-\;5 + ¥Yya+ %) . ' '

Y (s -y ~ - d ‘ o

;; .X X Ay-r — 2 By-1) P . . et N -
C ’ ' ‘ a-['('g_; 9;)0 - 'z_Ni't 4 ':IIN—I)

P 2By 1 1 1 (1—i’” 1du- l)1 lol dy=r) - +
; VAy-1 Ay 0 Ayxya\" 2 Ay 20“4” 1 o

(24)

FOpy

3P(8 —-——+YN—1)

2y bt Ay 7o

V N l 2&1‘11\ 1 o a(po
R,

+

ds + S

: 2n
ot i)
! 1 ]J‘N_ 1 — i&v..l Ay.._l_ .970 N : ’
+ P 5 Ay

2ay WAya" ‘
27
317(8)0) —-+-!rfw_1)
_ N1 . 0 N
l/AN—lu ' Opios
’ T 2n
611<8,. — == Wy_ )
1 By 1 f_"”"N,”.”-ds

JEET ey gy IR =)

O, 08

[ lo] Aw_1

—1|ods
2(XAN 1 - ]O’

(0 =8 —sk-1)..

In formula (24), the first double integral has a continuous integrand. Using the
integral formulas (74) to (81) from Section 7, we also find that the integrand of

the second 1ntegra1 w1th respect to s takes on the following value for s —sA ll

1 6F(s, @Po — +TN 1)

T — = “" .

L 3B 1—4AN—1BN 1t S8-1By-1 354y 1—4BN 1)]
27'5, , awo

4% - 1VAN 1® ’ ' AN 1VAN 1®
: 2x . . .
8’1’(8, ——+Y _)
1 9‘%} N il An_ 1—2Bzv 1
x| Ay yAy_.®

+0( %)

.
The last term in Equation (24) contains the only singular kernal part [see also

formulas (82), (83), Section 7]
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c)
Leading blade n =N — y , rolled-up transverse vortex.

The part of the velocity component -_(ugN‘Al))J to -be investigated consists of a
rolled-up tip vortex and a hub vortex. Both have a similar structure. We will
therefore discuss only one integrand and will drop the superscripts (0) and (i),
The singularity in the integrand of part .fyg‘if")f is given by the equation system (7).

The values of 'r,| and ¢ must be calculated from it for prescribed sy_jjand g .

We will develop the denominator D and the numerator N of the part (u{ -1))‘ in

the vicinity of this point. We will therefore set

Y= %ﬂ-if}zr,‘ r=r,+o0 _‘q(_r_) =0+ océvq

and consider only third order terms in the denominator. In the numerator we will
only consider second order terms in 'y andYg. Considering (7) we find the following
after some elementary transformations

D= x‘{g’ ‘(1 + rﬁlao2) + 29 x[aN_l sin (zpo — Tvy_z — o‘o) — Ky sin (@y + xg) —

. 2n , i
=8N —1 roaopos(gp‘, i —oso) — Ky 75000 CO8 ((7g +ao)]+
+ 2t [«ﬁv—l + 5 +2ky 8x2 005(% - Fn +%)] — x° by 81 8in (% —?NE L*'_%) +-

o * ‘_ 2 ‘ r . 2 4
+¢° roaoﬂ +oxan- [cos (%—Fn —-ao) 1o o 810 (% ‘——A—i—t —ap)] —20%yxp X (25)
. | B - ’ 2 I P 4 " . ’ ‘ 2 ) v '
Y% [aN_l cos(tpo— Wy_z —ao) + ky cos (gy -+ op) + aN_1£2°—ao sin_(qpo— -1—\;—:(—050)#

: o ot N . R
._k,,iaosm'(%-{—.a)} Co . S

[

and except for fm, (sign of the tip vortex)

N = W 0 [8:{-1‘008,(% -5~ O‘o) + &, cos (g, + ao)] + @ x 851 8in (% - 2?\’71 —050)+
i ‘ 1 ) ; * . 2n ) 4' . . '

! : 1 of 7 ~ ‘ o -
ke ((p°+0‘)]+*2—9‘l oo’ [8”'1008(%_%?1*”%)“‘* c08 (g +ao)]"' - " (26)

. 2
== @ X 8N -1 To &o CO8 (% — Oy — Tﬁ) .

17



We will now restrict ourselves to small k, values as before (i.e., without any
reverse flow, that is ~sy_;- k4 cos(p, +“o)>_.QD- This means that equation system (7)

can be linearized with respect to (f — 8~_;)‘ and ’(%_.2_1\?_%) The approximate solu-

tion then becomes

27 . L ‘ -2 C
ka (“o',l‘sz)SN-l‘s‘nA(‘PoA'*'ao) ‘ (0‘0 +7vf)8x-z :

. ‘ 7
! !po.N 8§ -1 -+ ky €08 (@ - Q‘o)‘ M

Lry A8y .1+

851+ ky 008 (o o)

We will use the following abbreviations:
o 2 2n 2
2.A=8N_1+k2+2k*81v..1008 (po——+1l)0 -; —(1+T0a0)

N

2r A 2n
B=gsy_ 15’“(%—'W‘_0‘o)—k 8in {po +°‘o)—3N—1’oO‘0 cos ‘Po—‘N““"o

‘l‘ ,‘7* o 0‘0 cos (‘Po + o)

AC B = [8N 1cos(¢o—?lvn—oco)+k cos(<po+oco)—|—

i

: - 0 .
+ 8x_17xo8IN (1/)0 —l—\:—z —ao) ky ro ovp 8in. ((po -}—ozo)]

7

& o ‘ (28)
P, ='sy_qco8 (% +T —ao) + k008 (o +’q°) ;
‘ ; 2n ) . i L
Py = gy_q 8in ('I’o~~"“N‘“ —o¢0> — ky 8in (py + 0g) 3
[ / . 2
, Py = co8 (% —,2N—n ——ao)' + 7y xo 8in (% — _1\772 —ao) H
. 2n , 2n
P, =sm(1po-—7—oz(, — 7o g COS | Yo — 75 — Oo -

The value 4 ¢ — BY is always different from zero and positive. This is true
for the condition, not connected with any phy.‘j;Iical condition, that the rolled-up
transverse vorticesl of the blade _”ﬂ-—:"_jl\?k;flldo not touch the 3/4 line of the target

blade but intersect it (Figure 8). The direction vector of the rolled-up tramsverse

vortex is given by

e 2q\ - g : .
dsq =‘[— 8N -1 8in (% + _T\’yl) e, 4 8y_) cos (% +y — —A—;E)e, + &, e,]dtp\

and for the 3/4 line at the blade n = 0 it is given by

e e e e e e —_——

dcr = [cos (@0 +a) P, — ra’ 8in (% +a) e, + Bin ((po +_a) e, + roa’ cos (¢p., +o¢) e,] dr ]

with

18



Geometry of the tip and

Fig. 8.
hub vortices of the blade N -1
at the target blade.

y | 1 2n o 2n 2
Part ‘_(ug"—‘)) =in f r, (q),, — = %-4-1) [(rcos (@o + &) — 8x-—-1 CO8 (% N + %+x)) -+

Ve

. 27-8/2
('3‘“(?’0‘*‘0‘)—31\ 15‘“(7’0-“—+'{’o+1)“k (Wo+l))] - X '

,‘} X [a?v_'l——qu_l ees(qpos}:x—ﬂ TVE

L kg ay_1 (o + 7) sin (9’6 .

in

L T
|

+ +x)]dx+
1 3 2 21-8/2
v+ fﬂ.%~——+% x)[4x +2Bxe+09] X

2n , : . o
1 ky 8y _18in (%— _N7E +1’p0) — %ot —px8x—1 Py+ 20 yxo (P1 + —5—0‘0 I’,)

As can be immediately calculated, we

then have

(d8y X dsq)* = A C — B? |

and the statement made above is therefore

proven. Considering formulas (25), (26) /294
and (28) we then obtain the desired

equation:

|

) ke r@os(¢°+a)+k.a,v 1603(%-—‘7\r+%+x)+

x4 5 X
'ty Ay*+2Bye +Cg? : (29)
- R 1
L X ——QVAC—B’+gst_1 P, ~o¢og’(P,'—§—roo¢0 )+ x"‘sN 1><
o 2n T 1 "
; X(&N_l +Ic,cos(<po—'—+%))]dx -}——Im(q}(,—————{—%)x
ol AT T ' lolJ4C — B
3 = SN PN R =) B
_1 A r—r 1 1 ( 2n )
" rl/m'i':"m'bz TG Amya (8‘ -1+ -1 ky 0o {0 ‘7v‘+%)><
Vb2 + (r—1g)? JAC — B N .
sAa Fm(%.—wﬂo)' ]

Some explanation of formula (29) is required.

is apparently continuous.

The integrand of the first integral

Using the integral formulas (74) to (81) from Section 7,

we also find that the expression in the rounded brackets {}[ takes on the following

value for "g_"=+0:
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1 . ( 2a . B 1 1 -\ 1 sy_1 P, B
' —Iﬂl( el of )I:S‘- P(—:_—::'__— +—————————-—_:)—-:—-____‘..—4 S
Ao (P V)81 3 JA0=5  2yAC_B/JA (40— BY /4
o 1., V4 , o BYAd - . roq )’
oi(Pa = oo ) gk 2 (P i) e A
2n 2B —AC , , 27
) 3+k%v81v—1 snn(¢p0_7v.+%)x

1/,
+—2-(ay-1 + 8x -1k, cO8 ("’0 W v m

. ‘27
ol (g, —=Z o’
X( Bc 1B 0,5)+~1_ (""’ N+_".’°)
JAC—B Y4  yAC—By4’]] 2= a9 JAC— B4

. ) ‘
In the last terms of formula (29), the singular expressions 3 and 1In |g|]

respectively, which are singular according to the potential theory, have been

e

replaced by Fogpy . This is based on the fact that a

In /b2 +0*| where ¢ =r — I

2 e

rolled-up free transverse vortex behaves like a RANKINE vortex in a viscous flow

and a finite (even though small) core radius, and does Ept have the behavior of a

single vortex filament of ‘potential theory.] Sﬁh a velocity|profile can be] '

quite qell approximated by
e (b2 +92]TI] with b* as the core radius. (30)

Equation (30) is very suited for further treatment.

The part of Equation (29) corresponding toj_é—xpi':égsion_@m ‘gives a good /295

description of the velocity field, when the target blade n = 0 penetrates thi‘ough

the rolled-up tip and hub vortices of the preceding blade n=N-—-1

If the core radius is small (for example b, =~0,05 R,), then the function (30)
becomes discontinuous almost in a step-like manner. However, we must consider
that according to Equation (27), depending on the instantaneous angular position
7o of the blade, it is possible to have value r, < Ras well as ro > Iy and corres-
ponding to this r > RJand < R. Since the blade target points are restricted to
the range R(,‘é ’;§ Ry » this discontinuous, step-like course of the function (30)
only exists for r, = R,|and for 7, £R,. Only then do the rolled-up tip and hub
vortices of the blade n = N — 1| intersect the blade n = 0 (Figure 8). These pro-
perties must be considered in the solution of the integral equation derived from

the flow boundary condition (12).
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4. SOME INTEGRAL EQUATIONS

a)

We consider the integral equation

7 — 70(@os *o)
+ [" — 7o(®os 0‘0)]

Fig, 9. 1Induced axial velocity
for penetration of a tip vortex.

11 9y (3, 9o -+ %) R<T<R
P ["—5;—— +3, 7(8%4-0‘0)] — (Bis o< T, (31)
. i t=msim
ro can take on values which are larger than Ro. Using the transformation b, =
1/2 (R, — R) Y| and
‘s——ue +R)— - (By— Reost; ' r =i, L
o s ) COST ; r =—2—(R0 + R)) — E—(Ro — R)cost;
5 o —-—E (R, —}-R,) —~§—(R°__ R,) cosdy, (rg = Ry); to = 5(1% + R+ ~;— (£y — Ry) cosh O,
L 2Ry
Equation (31) takes on the following form:
cosa“"“"o . .
. + cosh & _1 oy (1, (po, + %)+ sint -y (1,9, + ) dr
b”+(cosﬂ_c°s'9°,)2 T , ot . 2_1_3_—{—_12,__008 cos T — cos ¢’
. +008h ’;90 ? -~ . Ro _ ,R( T , (32)

Sn; Ysa; 0320)-'

In Equation (32), we have — cos 00‘ for r, < Ro' and ‘cosh 19;‘,‘ for r, = R/ . At the tran-

sition point —00 =ﬁl and ¥ = o}both equations agree.'

Using the integral formula (64) proven in Section 7, we first find the follow-

ing solution for the int'égral equation (32)

ay(zl,qr +-o:o) 1 sing- y(t Qo+ ) _ - Vo, Fsind 7 12
p T Ry + R, — V“ "}&m ~)2[1 — B4 0 4 VQJ R bC(%,ao)
ey . |

(¢ first undetermined)

E=cosdly for 1< Ry; E=.— cosh UH ‘ for 7, = K, ‘ (33)
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The values ¢, and ﬂ(ﬂ depend on the instantaneous angular position 1%] just like
ol + Equation (33) can be looked upon as a linear ordinary differential equation
for the desired function y, as far as its dependence on ‘74is concerned. It can be

immediately integrated using the known formula. The unknown function ] ( g is a
constant with respect to the variable 1) as well as the integration constant which

occurs for the integration ofthhe differential equation (33) can be determined from

the necessary condition (20); i.e., y =0/for 7 =0/and 7 =4q.

After an elementary calculation, the following solution of the intégral equa-

tion (31) and (32), respectively, is found:

R R -2 12
4Ai4_m4_ [&+m_m4}

e )_ T — B ' B, — By c 8 ) gyt
A ey 1 U BTl A L e

N

g . A o n Ro+R.c". e
Ry+ R, e "R+ R, e\ | |B=E " :
_f[ -—00?1] dr’ f[ —cosr’] v’ e V2 (/@, +sin?7’) dr'| -
N - - 0 . ~ ’

Ry— Ry Ry,— R, . ) ¥ b+ (cos T

\ .

where

E=costh for r<R,, &= —coshd}|for 7 = Ro y (34)

Abbreviation:
Q=(E2— 1P 44500

‘H@e, 60) 1s an arbitrary continuous function.
Por &g}

In a similar way, the integral equation corresponding to (31) can be solved,

if r, is replaced by 7 {(pync)|. Then we have £ =cosdjjfor r = R/ and & = +cosh#f|

with 98 = 0| for r, < R,
It seems appropriate to determine the order of magnitude of the solution (34)

obtained.

After this, when the formula (34) is used, b, must be looked upon as the core
radius of the rolled-up transverse vortex. Measurements [4] have shown, that the
core radius of rolled-up tip vortices of a rotor lies in the range 0.04 RO"and

0.07 R,. Together with b,'=1/2 (R — Ry} this results in b~ 1078

Since as a rule A(_Ro—f' 1:,)'](1:,,-{-‘15‘)'51/2_] , we also have the following good approxi-
mation:
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-y

I T m+m 1z ~ R
fVRo— Ih Cos T dt mVRo_ R; R — R‘smt): (35)

We will distinguish several cases when estimating the order of magnitude of the

solution (34) for small values of b.

First of all we have sin®8,> 5. Then using E = cos ] we have:

o ‘ ‘ - (o, sindT\ ,
y(r, @) b (Rot gi — ©08 r)—llz f(ﬁ“_f_%‘ — cos t,)ll2 bgsm % +,sin 00) dt’ .
, R, s ; 0 s b (‘?°", —cos 00): J
- f (Ro + R‘ - 0‘ 8T )1/2d1 (fn(—————-Ro + By b coSr)dq)_l—'X B
Ry — R : R, - E . i (36)
e

: Ry + By N\1/2
'x f (Ro — R cosr) b3 + (cos T’/ — cos )}

L

The dominant integrand in Equation (36) apparently has a steep maximum when a8,

and to a good degree of approximation (s*<1)jwe have:

a sin?7y Dot
. f(R° + R cosr’)llz (sm b, - #n B, )dr N . . o
B, — Ry BT (cos 7 — cos Bt (- de’ =, .
0 . ~ _ .

C . = . /‘ Oote ‘ . ) A (37)
3 . Ry 4+ Ry . iz - dr’ _ 4 Ry + R 1/2 € sin 8,
~ 2 sin B, (Ro —R, cos 00) - f S (Ro A 190) aro?an—l—)—-.— .
. Go—8 ' ) ‘ e

Using (35) and (37) we then find the following estimation from Equation (36)

Ry + R + R s 12 1 =L (t _ 1B - R ,)' for
R, — Ry 0 e8in 7N\ 2 B+ Ri 25 S b
Y m—-—lgw-_i; R-—————~”—4 arctan B ! 1 LR — R v(‘"" o 2> %)
! 0 $ ' . _ P D 3 for » .
(Ro—-R( °°s’) n(T 2 Ro+-R«mnT) b ©®

Formula (38) shows that y}i"a(.‘l’)}

In addition (as can be
expccted from the structure of the integral equation (31) we find that %/.is posi-
tive for r>r., and negative for *¥r|. This is clear if we consider the velocity

field induced by a rolled-up tip vortex (Figure 10).
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Fig. 10. Various positions of the tip vortex of blade N - 1 at the target blade.
The circulation fraction y produced by tip vortex N - 1 at blade O.

Let us now assume that f,=7z|or 8% =0 . Then using &= —1f
o _. " . 4' ’ : '

: > > [Ry+ R -1/2 R, + Ry N2 (20 sindz) de'
v "“T"’(Ro—lh_co”)‘ {f(Ro—R“““). b (eon e+ 17 |
o ,f ; SR 69
. [(Ro+ R | e Ry + Ry AV Ry + Ry /2 (8in? ¢’ + 2 b)dv’
; 'f(Ru‘—R( ‘cosr) t(f(Ro_R'—cost) dt)‘ f(Ro—'R( \cos-r) Wt (oose + [
R : B 0 AN . , ,

Considering relationship (see formulas (65), Section 7)

Lkt kR R oo
as well as Equation (35), we obtain the follow1ng estimation from (39)
ot (B ) (R ) R
_(t_%-§:;§‘snnz)vlf(2+R+R V5= VbR_H{‘)}Ny’ (40)

for
1<, Do=nm, OF3=0l

From the representation (40) we find » ~0(1)| for b0 - It is understandable
that 3] is negative, because in (40) we have r,= R that is, r <'r). Finally, we
consider the case sinh?#3>8?] and sinh #F~coshd¥ . This means that the rolled-up

transverse vortex lies at a certain distance outside of the blade (Figure 10).

From (34) we obtain the following for b'_.'(i]:

(Ro + B ) j R,, + R oo )1/2 (sinh? 8% + sin? ’)rlt
v Ry - Ry f Ry — R; “(cosh % F cost)® - 1)
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.
e _ —

1 1 Ry— Ry . Ro+ R.  \12 (sinh? §¥ |- sin?T)dv| _ 4l
_ —;(‘t - TR R sin r) f(Ro cosr) (cosh 8% T cos T [ (41)

0

As ‘t’)“'.,j increases (that is'as the distance between the rolled-up transverse vortex
and the blade increases), from (41) we find that .7 —>0]as should be the case. This
is because (sinh? #* - sin’z’] (cosh #F + cos 7')"¢| becomes independent of 7 and therefore the

integrals with respect to ,'t'f}L can be;agpfoxiiﬁatgg] by (35).

This then concludes the discussion of the exact solution (34) of the integral
equation (31). The integral equation corresponding to (31) can be investigated in

exactly the same way where jn(%.&@)J is replaced by 7o %) .

The derivative dy/dg,] of the solution (34) with respect to the angle 'g, which
plays the role of a parameter, remains continuous at the transition point [ ="HR,
#y=n| and #7 =0/. This 1s true because dr/dp|is continuous according to equation (27)
and also we have the following abbreviation in (34)
@z . 2 dro .

it follows that »m »—-R;d«%

1, 1, "
rn':‘?(Ro'*‘Rt) "'2—(Ro— R) E,

This means that 6y/aq;°J remains continuous in the range “0§¢0§2’fl'
b)

We will consider the integral equation “(R( = r SR; 05 = 2"7;) :
8 A

1 . \:0 + 'I’o /(% 0‘0) b2 + [f - ru(¢o, lXo)]a . . . “ ' ’ _‘
R, . :

‘ =1 .3F(so¢+a> 1 ds | '
A T 2a [ — +'2_8F('9’%+0‘o)J-,;__8+‘
T : C R‘ * I ‘ A

‘ - 1 2x ' : )

far("% N+Y’N 1) Ve jls (42)

- —f*(r’ %) 0, | P 8; o : ) + Q("» ‘Po) P (‘Po iy + V’u) +
i ! + 27! .
i Tag f Al 2 +'I’o + x)Q(r Yo x) dx + f {I’ (2, 9o + 01) Ky(r, 3, 90) + /298
‘..\' l lh | . ———

61 3, 0
+ 9 ( ::+ ’)K,(r, 8, Po) + — or (8’ % Po + oa)K a(7, 8, %) +

S

ar (s,
(T, 8, (I’o: X) + (8 q)oa;- 06 + x) 1{5(7', 8, q)ﬂ’ Z)J ”Z} (l&

+ f[ar (8, q’oa‘i‘ 0‘ +x) K‘

(x)
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The structure of Equation (42) must be explained.

First of all (42) has the integral equation (31) as a part. In addition,
there is a partially singular core component which has the new form Is — s%_a(r, @171
The expression s¥_i(r, g)Jis given by Equation (23). This means that values
B <sy 1SRy as well as 8%_1 < Ry, s%-1 > Ry| are possible. The core component

mentioned above is not singular for the latter case.

A]",,.j is a special value of the desired function T|. When applied to the rotor

flow, we are dealing with the circulation of the rolled-up tip and hub vortex.

We will again discuss the definition of 1’,,,

1(l,to ]{4] as well as Q are continuous core components of the integral Equation
(42) for all variables. ({) is a symbolic notation for integrals with respect to
x| for various possible limits. Of course their existence is assumed. '0jf to 0y
are phase displacements with respect to Por|. q(r, o), falr, %),'f(qno,gzq),] F(r, pp, )] are pres-

cribed continuous functions.

For the solution of Equation (42) we first carry out the transformation

1 1 L o
8 = '§‘(Ro + R) — -2“.(Ro — Ry)cost K (Pa = Po — o)

and use the trial solution:

(43)

’ 42‘ : . _
F(s’ ‘Po) = F(Ts ‘Po) =TIy (V)a — _NE + %)‘/(%,‘0‘0) 7(1, %) + I’* (7, %) .

Let ¥(1,9) be the solution of the integral Equation (31). The function y is there-
fore known and can be immediately determined from Equation (34). In the case of
rotor flow, Yy characterizes the influence of a transverse vortex which is penetrated
by the rotor blade on the blade circulation. Since y(0,9,) =0, pim, @) = 0/, y can be
written in the form of a Fourier sine series (even if there is a relatively steep

function for a corresponding number L of terms):

e .
YT o) = 2 yilgo) sin At _ (44)

The other trial function I',)is essentially determined by the remaina\er of the flow
field in which the blade moves. It is also necessary for I]to vanish for T = 0

cand T = 7 and will be assumed to have the form of a Fourier series:
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‘ Me M
F T = a’n; 6"“"°sin T .
«(T, p0) ,.=‘§M,‘y§1 1 s
O<t<n, 0Sg=2a).

We will use the idea that the rolling-up process of the free vortices occurs accord-

ing to the following law. The vortex material in the range r>_1f2__"g_{_"1 makes up

' R
the tip vortex and the material in the range T < ie—“—-*—-——‘r makes up the hub vortex.

Then we have () .
R, + R, . '
(%) = (—_*“—" %) F(% ) ‘Po) ’

If we approximately set woé.(éﬂ)/Nl, then from (43) we have (,;01 ignored)

Talgo) = I'n(po) {0, %) ?’( :‘Po) =+ F#( ) ‘Po)»

or

™3 %) ; 46)
11— {(‘Po: 0‘_0) ‘}’v(g" ‘Po)

Fm(‘Po) =

According to our estimation (38) we have ‘y(n[z‘,fpo) < 0] and because we can also
assume that ? >'Olaccording to Equation (29), the denominator in (46) will not

vanish.

Before substituting the trial solution (43) to (46) into the integral Equa- /299
tion (42), we will first give some formulas for the ratiomal calculation of the

singular core components in Equation (42).

First of all, we will perform the following transformation:

'« _Ry+R R ) I
N ‘H " °2R‘oos$, f»; R oy 1SR},;
Ryt R, By— R, for L (7
o1 = =g e 35— cosh §* + 8” 12 2 (e 20) .,( )
4 for aN—l S R( HE
r;—E”;'R' nR‘confi. )

(4)Basically, another/;-’ value can be used to determine n/2] in place of I’,,.
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Considering the integral equatioms (66) to (68) from Section 7, we then find

g |

. ——
1 (ol (sspo+ag) , 1° ds Iy ds
27:[{_—_:3_.9—-—--"75 m(”o?’o+“o)}r_8=2_ﬁff'. (&9 -{-a)m"'.
TR ‘ . A R '

. ) R‘
Voo . R,

: , y ,l ar‘ (5:¢o+0‘o) -1 4 . ds ‘ ' '
L ! T om f {M_*—?E_—.—' + i_rrf (f' Po +‘a°,)}r i '
. 5 | (48)
' M, M : 7
' = £ (qe 1 o) 1 sinyd 1 1 R, =~ R
| Quy v 0 — I 0 . .
!“ ,M,Z_"M,',é"l e {R., “Remd T derd) Pt f Loy ) VT “‘"“"}'
. . at )] )
] (r<) <m). (48)
i R . 9 . E
Vo ar(o, 2y, ”) o . o .
| _2.1_ f Po N + YN ds - —1_ g,. ga ; ;',,(,,,'_%_i~ 'l’zv-l) cos :.5
| cemy Py vs—a’l*v_l(r, @ w1 ur 1 © e’ ' + .
‘ B . ) ' . (_l)ve—-ve‘
P 1 My M R -“( A " g
‘ e ain T O S iu\ea Rt ( _ 2=
i 2 /.mgu, vzczl e BT 2 op, {0 . )f iy + ¥r-1,00) X
: I ' (49)
! 2x - 4n 4 ’ -1
i X;glw(%‘—w-*-WNLI)[I—I(%‘,—_N—-F WN—1+%)?(%,:%‘—-'jv"-{-‘PN—l-I"'Po)] X
cos A & ) '
X o A¢*

(=re~

(Pa = @o — &) . (49)

In Equation (49), ‘the upper sign in the bracket expressions hold for
fR‘gs}‘v_lgRJl , the middle one holds for ey _, = R4 and the lower one holds for
?fv'_lg;)é(i. G) In the case of the rotor flow we have for

Osmtacn |a0d RS <R
r<gt+oas2nand R<s{y_ =R

and s <R, and for

SN-1
and 8;_1 = Ry,

are possible.

[See Equation (23)]. The transformed variables ¢, ,g_*] then lie in the following

ranges according to formula (47):

and - 0<£* < e s
and O0SE*S @)

0<g+tosn : 0=8<biip)
aSptos2a : Gip)séisa

(S)The values in brackets transform continuously into each other at the transition
points &=0,¢*=¢land &=n=¢*=01in a continuous way. We have % =% _1rp) . The
derivative 3/dg)in (49) must only be carried out with respect to the explicit gl

values but not with respect to the phase displacements ¥y.;undy, Which also depend

on ¢|. (Because Equation (46) is also obtained with the assumption yp,~ (2a)/N >
that is, independent of ¢). :



with

£4(p0) = aro cos (R° ke ;.,2 _8;1;‘ o %)) ; sﬁ—a) —bn—a)=n.
£¥gy) = arcosh (R° + R‘;oz_ai’e:l (R %)) P g0 = — @) =0. (0)
£4(pu) = are cos (R" t 7 2_87}:1(&’ "’°)) A0 =b(-a) = 0.
£¥(go) =arcosh (R° Sakte 2_8’*}:‘(%’ %)) \ H(eo) =t (x— ) = 0.

The trial solution (43) to (46) for the integral Equation (42) can be written /300
in the following clearer form, which depends linearly on the solution coefficients
@,,| which must be calculated:

l

A -iu(——-—w.+ )

o nv—#@maaﬂnwd
'8, )= I'(t,9) = ZM 2 Gy 0“‘% sinyT + 2n 2n '
pe= =My r=l : 1 -—‘l(tpa—T-i-'/’mO‘o))’("gsq’a—Tv‘“*"/’0) 51)

E (@ —piyr. = Ty -

Here j4i;¢oj is the already known solution (34) of the integral equation (31). 1t
characterizes the effect of the penetrated rolled-up transverse vortex (tip vortex)
of the preceding blade on the circulation distribution over the blade, in the case
of rotor flow. The trial solution given in the form (51) very clearly shows the
separation of this solution. The remainder of the solution consists of a conven-

tional ginv v series obtained from lifting line theory.

with (51), the integral equation (42) takes on the following form:

La/tr, ) =P —5 [ ar 2o, "’°+°‘°’ + 5T o0 o) | =2 4

o ol (s gy — 22 o
+—l"‘f*(7' o) [ .(8 " N -*‘-WN—I) ds - U (52)
2n dpy - , i ,sj‘v_l.('r’, ®o) — 8 -

| ny

. ng!‘
PRI
T T 2a — 5= | Yroex) X

, l—f( -5 +'Po:0‘o))’(‘2—:%"_7\7 +%) n : ',’1 \

7 . i
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) , ’ - ‘.— o " 7 ' 27; T R, ' ‘s )
‘ ‘ Ft'(_z" o_'ﬁ'<+’l’o+1)dx _ . 1 . ] '
- X . — 5= I'(s, @y + 0,) Ky(r, 8, ¢0) +
2xn T 2n 2n o
l—f(%’“—ﬁ‘f%‘*‘xv“o?’5:%““ﬁ'+%+x ) .

My

o, 8I(s, g + 0) ., 018, @0 +0y) - \
‘ + 8.9 . Kﬁ(r’ 87 %) +T K:}(r: 3, ‘Po) + ‘ C. (52)
T o ’ aT'(s, g, + 05 | '
+- [ i%&&éﬁ”“iﬁ Kylr, 5, g 1) + 8 .%a: sk 15 P x)] drpde =0
n ' . U .
o . IR R
' ' O<gs2n RSrsR). /

It is most appropriate to solve (52) according to the method of the smallest square

error, that is, using the condition

2L, L
2 ) {Ig/lry, poi1)}? = Minimumv..

121 4= (53)
. A | ln’ 1 : ,
Here r,,qa,,;l are selected target points. As a rule go= —]—-'and r,=E(R0,-|—R,) -
LR <0 . ’ -
'%(RV—R,)cosLi_% . The condition (53) and the trial solution (51) leads to a

linear system of equations for solving the 2 M, M|solution coefficients "i;u,jf . In the
special case L = M and LO = MO, the minimum vanishes. As a rule, we will select
the approximation I)>\'M[ in order to have a uniform approximation. Somefimes, we

will also select I,> M-

The two singular integrands in Equation (52) are evaluated using formulas (48)
and (49). The other integrands, which are all continuous are solved using the con-
ventional quadrature methods. The fact that depending on the target point T4, ol
we have either R, <s¥_; < Ryl 0T sh-1< Rjor s%_;> R/, and therefore Equation (49)
is represented in three ways, does not influence the solution method in any way.

It is only necessary to determine how the quantity a'}}_{J depends on the selected tar-

get point f}, @oil. This can be done using Equation (23).
5. THE INTEGRAL EQUATION OF THE FLOW BOUNDARY CONDITION /301

In Sections 2 and 3 we discussed the velocities induced at the rotor blade
. using the vortex model under discussion. If we substitute this representation 3)
to (6), (8) to (10) as well as (19), (24) and (29) in the flow boundary condition
(12) at the rotor blade, then we obtain an integral equation of the general type

(42) as discussed in Section 4b.
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It is not necessary to write down the individual complicated core components
again. They can be directly taken from the formulas mentioned above. The continu-
ous cores must be summarized in a clearer notation, as was done-in Equation (42).
However, we should notice that there is a difference between Equation (42) and the
integral equation derived from (12). This is due to the fact that two characteristic
terms appear produced by rolled-up transverse vortices (that is, tip vortices and
hub vortices). This changes nothing in the method of solution. The trial solution

(43) must only be extended as follows (with @a =@, —1/2 o‘o -1/2 a,)l
(s, go) = I'tr, %) = (sv. - +w‘°’) /o(%, ao) YolT> @a) +.I'm (% -~ +w&")/¢(¢m xy) V«(‘r»%)+’( o
5
4+ N

where y,,\ and 7’" are solutions of the integral equation [see (31), (34)]

r — 14(C0s dyo(s, ds " “1'\‘1.
o(Por %0) [70(;8'7.’?) 5 7’0(3"P0)] | ( zé- +-§rx.) - (55)

B FIr — rol@o ool 2n
R

_ r — 14(g &) | , ay‘(s ®o) _l_ 1 ds . o
. b + [r — rdge x)]? 2n s . 287"(8 #o) r—es’ (551)
S Ry A '

Instead of Equation (46) we now have the following with 1,;5,0) : 27: ]N und yJ(‘) (2 ) /Nl

J-1
Iulpy) = F* ( »'Po)[ — folgos %0} o (_ r%) - /t(‘Po: 0‘1) Vi (—‘ »%)] .

(56)

Since 'y, /2, go) < 0 andly. /2, p;) < 0| » the denmominator in (56) is always posi't\:ive.

Except for the small additions mentioned, the solution of the boundary condi-
tion integral equation (12) is exactly the same as for (42) and (52). This means

we do not have to discuss them further.
6. CALCULATION OF THE BLADE FORCES

The axial ~K,J and circumferential X, forces which occur at the rotor blades
(per length in the longitudinal direction) are determined using the KUITA-JOUKOWSKI
theorem [1], [2]. The forces in other directions can be composed of the two known

force components.
As is well known, the velocities induced by the vortex system at the lifting

line of the target blade (x =0,y = r cos gy, z = r sin %)J are required in the KUTTA-
JOUKOWSKI theorem.
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In Sections 2 and 3 of the present paper, we investigated velocities induced by
the vortex system of the rotor along the 3/4 line ((x =0,y =rcos (g, + &), z = 7 8in (g + )|
of the target blade. We must test whethér these representations can also be used
for calculating the induced velocities at the location of the lifting line (x = O,

f.t/_;—-rr'cp‘sjpo,;f r sin (po), . We must also determine the required modifications, if any.
A review of the results of Sections 2 and 3 shows that:
In vy we must set o = 0 and the sum n = 0 must be dropped.

. N-2 N-2
In .Zv(QMJ and X v according to Equations (5) and (9) we must only set o = 0.

n=l n=l

In r&""”] and vifénj in Equations (4), (10), (24) and (29) we must set
& =g =%y =0c(;J=_oc_f.-‘= 0. This is not true for the integration limits and u.values
which remain unchanged. In addition, in Equations (7) and (11), (21) to (23) and

(25) to (28) we must set « =s&y =z>x_(r=a(', =J af =0.

The above statements also hold for the second integrals of bgﬂ and o from
formula (6) and (8). Only the first two integrals of these induced velocities,
which were already investigated in Section 3a and were abbreviated by the part
ZEQ’Q—ufU]along the 3/4 line of the target blade, must be modified at the position
of the lifting line from the representation given in Section 3a. Consequently,
we will also use the simplifying assumption k, = 0. The necessity for changing
this representation is also due to the fact that these induced velocity components
become singular if the coordinates x.=0,y =tcosqy, z =rsing) of the lifting line are
simply substituted [1], [2]. The expressions for determining the forces according
to the KUTTA-JOUKOWSKI theorem avoid any singularity and are obtained from the
lifting surface theory. The angle #Q of the lifting vortex line is not used. /302
Instead we use

Pt i
where y is the angular coqrdinate in the blade chord direction. Z;Gﬂ refers to

the leading edge 'arlbcl?(;i,,(r)'{’tév{‘ the trailing edge (Figure 7).

If integrands are found for y-» 0/which are integrable as CAUCHY principle
values, ln singularities or continuous functions, we can immediately set j$0} in
the corresponding components. The critical terms, for which divergent integrals

with respect to s would be produced for x> 0, can be interpreted using the following
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integral formula [1], [2]:

luu e = lim In (R —nir- R‘) =2In 4/ (R — 1) (r — R)

V(r—s>=+r'a'z= =0 iyt r[xu(r)-xv(rn

+2In2 4 1.](57)
We will have to refer to the literature for the basis of this method and the deriva-

tion of (57).

Using the method developed above, we first obtain the following from Equation
(6) and (8) for x—-O y—rcos(<po+x)lz—rsm(<po+x)] and| X"Ol
a + R, 24

Part (u +u{) = Zl——llm ff[r“-+ 8 —2racos (y —y)]~%2 X
T x+0 ’

v

(58)

R’ 0 - ,
{ar(s’%_*-w(racos(x—w) )+£E’_a_‘$ﬂr5in(x—w)}dwda-
. - .. o - .

A simple investigation of the integrals in the vicinity of the location s = r

and ‘W_= ojshows , we may set y =0/directly. We find the following

clear representation

. Ry 2
Part (u(o’)——ff [r’+s’—2racos¢] 312@'%@(”0081;; 8%) —
/. Ry 0
Dl = o+ r e yry-on L 70 ar(s,%) ( ~o=r)lapas +
+ 81’(8 %)[ 2xs ' 1 ‘4 o _ (59)
m ‘as Vdolrs 4 (r — )2r —8 V@q’-ra+(r——s)3
o 2a;/——+;/4a’rs+(r——s)2J ‘
2frs Cir—4 |

The integrand of the double integral in formula (59) is limited for s = r and
v =0/. By means of a series development with respect to tp] it can be shown that
it has the value e . . -
ps (r — s) -3 rs

lim lim 921'(3, o) = — B 02(r, y)
g0 0-r \ J(r — )2 -7 8#’2/3 98 9, 2r 0rdg,

The integrand of the second simple integral over s (59) contains the known singulari-
ty of a CAUCHY principle value and that of a logarithm, which can be easily evaluat-
ed, TFor the part (u‘}j’r)] and using the substitution y —y =7| we find the following

representation for the limiting transition x;o_]:
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Ry 24 - - 1

P“twmf'—~i[fﬁ”+ﬁ—ﬂrnmmsﬂgluit@mmﬂ
' 99,
Sl ey (200 4, 0 ’;“’;%’)}d ds +

: ‘ : Po ‘
i R, : R, ] .
|1 [orea 1 ds 1 (o, ET (60)
\t 4:nm 0 8 fiairs+ (r — o) 4nm 6 |sydatrs +‘ (r — o)
" 2oc}/—+[/4aﬂra+(r-—a)ﬂJd8 1. far(s,%) 1 _‘ " ds
e = TTags) T ey
i Vre® ir — sl B b “z-»oR Po Ty ra+(r~—a)’

N i . L . $ ,

This last integral formula (60) is interpreted using Equation (57). We obtain /303

- R, ' R :
“mfar(s, go) 1 _ ds ] f(af(a, g) 1 ol'(r, @) _1_) ds +
z-»om | 0o ‘9 Vxirs + (r — o) p dpp 8 . Op s [r — sl _ (61)
1 81, «ro)[ 4Y(By — 1) (r — R)
+ = 21n +2In2 41
T o O =] ]

The integral on the right side of (61) has a discontinuous integrand at s = r. It

has the value zero, which is its arithmetic mean value.

We must still determine the limiting value of the integrand for the double
integral in formula (60) for s = r and 7 =0j . The following is obtained by means

of a series development with respect to 7:

lim lim ’[— ’1‘ —zizmmm ’f e e +'_}_ - ren’ a 2AC %)
ot | 8 ZaF pren® T B —ap+rag’ | 0%
+ lllm lime — oz 0 7 33]‘(8,%) - — _1- l oI'(r, go) _._1._ ______a”-l’(r,%) .
2 n-+0 s>r ;/(r -_— 8)2 + 7' 8 1] a¢: ‘I 24 r? ) a‘Po . 217 a‘l’g

This concludes the investigation of the induced velocities required for the force

calculation according to the KUTTA-JOUKOWSKI theorem.

7. INTEGRAL FORMULAS

In the preceding sections, we used several important integral formulas which

will be summarized and derived in the following.
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a)

We consider the integral which can be evaluated using the residue method over

the unit circle 'z = oifjof the complex Z plane

% .
' | .cos n Tdr

I"'= n | (cost — cos D) [b% + (cos T —_5)’] =
=_4_ Zn-1 47
me (ﬁ Z+-Z———20090)(Z+—-—-2 = )(Z+-é——25+2ib)
) (EK) X B - - N

The zeroes in the denominator of the integrand are located at Z,;'éi'él.J

Zy=E+ib+VET -1 -0+ 2ib5 2, = E+ib —-‘V"E’_'_'—'-'lu'—-"’b"}'z”i‘li‘._f, as well as at the conjugate

complex values.

We find
T Ty =1 Zylya=1; Zy+%=2cosd;

1 1 e

Za+z—;~—~zs-|~z—a—2u"l—2tb.

For. applications to rotor flow we must consider »nZ When evaluating the

integral 1. and when discussing the zeroes Zg %), we will cut the complex Z plane e
along the positive real axis in order to specify the principle values of the roots(6ﬂ)‘./
An elementary series development and consideration of all the possibilities

18— 1| < ¥ with Z="t1jor (5 = 1I>H with £>1,8<1,§< -LE>~Ilor 27— 1=1# with

Ta +(1+6%2)] shows that we always have IZ]>1 , that is [ZI<T. 'Using the residue

method we then obtain

Iy =

S fsinn®  { S —cosd —1ib . ¥ S &
. 55 ___,A__[E+;b—.V(E+tb)'.—l]"—
b® + (cos & — .:)"‘[ gin- & bV EabE ~1 ' ' (62)

it E—cosd b e
. —ib—ViE= b“—l”
2bv(:_tb)=_1[ - YE=TH ]]

In particular we find the following from formula (62):
(_ — cos B) sm—+ bcos(g

H‘

I, =+ .
o ] i b [b® + (cosﬂ - &9 }/—; ’ . i - (63)
. 4 : (E — cos ) sin 4 -+ b cos - '
I =._—2—-—--—-——-—‘{-6——1—-——_———[(5—0080)““2—chB’E]-{-'-l- - ;’. 2 - 2.
2 b b+ (cosﬂ-—— E) 2 2 b [b® 4 (bos & —-Z)7] ‘/—Q_‘ 3

(6)The 7 plane can also be cut along the negative real axis and the same result
is obtained for Tal if the corresponding relationships are considered.
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Uéing the notation: Z2_1-8 4 2ib 5=}, "wil and the abbreviation Ql =
(82— 1 — by 4 501

V<71 A
gin—i- VQ, sin

The combination then results in the desired integral re-

2
2
2

quired for the rotor flow:

Va;-{-sin’r ' ) —0080____
(oon = — cos 6) 15" + (oos7 - ;)ﬂ] “wE (o0s 3 = &' i (64)

X

wl- '+b'+VQr”’

0

since

.0 )1 ”’+b’+VQx o

? vz Ve

o<§<)

In a similar way we can prove the following integral formulas using the

residue method

L : . : .
- - ) N ¢ B . \
1 2b feindr o _ ( _ )°°“_ fing”
.;‘;fb—rﬁmf”"‘“ e 1+1F+ LVE o+ 00
p e @, D, (65)
lf . b’+sm’1 ; 2_—(2-}—3b)crc>s—2—-|—(2‘—2b—b”)§m—2——N
3 co“b’-{—(ccm-u:—1)’a e ‘V4ba+b4 ' o
0 R ‘
* A . 2 L
; ~2-—-——— b 4 0
| | 7E V + 0@ .

Here we have  2ib 4 bt = JE57 T B oi®s; tan @, = 2/b .|

Finally, we obtain the following with the residue method by integrating over

the unit circle of the complex Z plane:

n

1 cosvrdr _ sinv 0 ' ' 66
—fcos-r—-coﬂ?—i sind '’ E (ogoéiﬂ)‘ (66)
1 cosvrdr _ e=ro* | . (;9‘.5,0)-| ‘ 7
7 | cost — cosh O* sinh 9* ’ ’ . .

0 : ‘ -
T S L : . (68)
_;fcosr + cosh 6* VD amers  © .

b .

b)

(7)

From .the integral tables we are familiar with the three integrals

(7)See, for example, footnote 9 on page 29 in [1].
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S P amdx o m=0LY

R, -~

using the abbreviation @,=Az +2Bz+0|.

By differentiating with respect to A, B or C we obtain the follow1ng integrals.

PR

. _dx__le+111+2 Ay+B A " ,
DY 340 Bygr  3@C-BRyg . : (69
4\ xdy_ 1 Bx+C 1 2 Ay+B B T ' o
o= TBAC- PG SWAO-BTYg’ R ' 1(70)
| Py _1Az+B g 2 By+0 B, | 4 .
CJVet FAC-Byg? 3(A4C - By, . . : (71)
I ofaddy 1 By+C o8 2 By+0 C | ' : _ :
:fl VQ;“,_V—':TAO By 3(4C- Byye. . . L L |(72)
L2 Ny Cx 9 (24C— B)@By— AC%+ BC)
JVed -V Rz +rr'+34<A0 B’)VQ=+3 41 (40 - BYVG "
}; " 'y (2B’ A+ BO 2 1 V—Van+Ax'+Bx+— 173y
b TAAEE, o . SEVe it BAvAVG T -

If in the integral formulas above, we replace B by Bgland C by ¢}, we obtain the /305
following important relationships using the abbreviation ¢ =4y L 2Byo+ Col|:

}1'_'::) fo'dx a(AU B’)] 0‘; ;\ . :"[ :. ,‘ ‘ o 78)
.‘J‘l'iL ﬂ:f * ;“(;ro'g‘é,;w,;] o | | L - 7%)
EED S ""‘13,;’“’] gea, U e
32;(1)\“ %’{]:%(2-&@133)2 , .‘]l.: 1' ' . nl't (77)

lim xm"dx - i,.__.l_’.y_‘i__*;‘ : . B S e (78)
a0 VQS © 3 (AU———B’),’ e ' - " . o .

llm[ e dl] 4 ’ B | 1 L ,.,“ . - 79

—a

a0 V?j“ | 3 (40~ B VA 3 (AC B VA

i ox“dx _f_{_ BC . --2 B o \ " (80)
350 Vor 34 o _ppyd 3 (46— B’) VA : o
" im | fx dx+ a’(__{l_C By _ 4 2m (2’A C-"B) (2B - AC) (81)
-0 | VQ, VZ” AT 3 (4C— B VA° (40— By yat -

Assuming that F(R¢)=Vi'(Ro)=0\ the following integral equations hold for continuously

differentiable functions I’a)\:

v R, '
s fumnigitan - [ -

Ry Iy
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It 1ty . .
oy AT, — »
f I's) In ‘_‘_Rg') s = — f dg’) [m (s RZ‘;) — 2] (¢ —1r)ds. (83)

Fif . . Iy

APPENDIX
8. THE ACOUSTIC PRESSURE FIELD OF A ROTOR

In many cases, the acoustic pressure field radiated by a rotor is of interest.
Sometimes considerable noise is produced if a rotor blade penetratesVgﬁé‘fzgg_ggpgj
or hub vortices. This is a process which we treated in this paper. The compres-
sibility of the air must be considered in the calculation of the radiated acoustic
far field [1]. Even in the case where the flow velocities at the rotor blade are
still far enough from the velocity of sound so that an incompressible calculation
can be carried out for the boundary conditiomns (8) (as was done in Sections 2 to
6 in the present paper). We will use the usual linearization assumptions of flow
acoustics during the development of the corresponding formulas. This consists of
a linear pressure-density relationship. We also ignore the squares or products of

all velocities induced by the system of singularities of the rotor [1].

In this case, we then have the following linear relationship between the velo-

city potential of this singularity system (dipoles, sources) and the pressure field

1 1 i W  _ op % %
apx—fg—o%_ B 'é?‘““”a?“w“'é? —“’aq)q_ “or "% (84)
where wdt = —dg,). The velocity potential @) then satisfies the general wave equa-
tion . . i )
(1 _13)?:"9 % +('1 _NVD w2 O 2wl 170
) oa® ' oy? @)@ T owor ciomot oy 029t oy O -
=f(z, ¥, 2 1), ' o ‘ (85)
where f@, 921 =(§; Q(rs, 0o (r ;rn)‘i only differs from zero at the location of the /306

gource singularities. In Equation (85), °q is the speed of sound which is assumed

to be constant over the entire flow field. are the incident velocities

U,y W
0> "0
with respect to the helicopter in the x and z direction (Figure 1). The pressure

field p also satisfies a wave equation of type (85) according to (84). However,

(S)As can be determined by a series development according to the reciprocal velo-
city of sound 1@&, the formulas for the compressible and incompressible theory
only differ by terms ~1l/e&|. This means that the range of validity of the incom-
pressible theory is exteneed for the near field (see [1], page 117, 119).

.
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because of the inhomogeneous right side

0 0 ? K J
_ (5? + u, P -+ "’035)90(% Q(rp, t) 8 (r I,.”)

|

Equation (85) differs from the wave equations which usually occur.in normal pro-
peller theory by the fact that two principle incident flow velocities occur in the
x and z directions. Therefore, we will transform (85) to a new coordinate system

X, ¥y Z, i.e., we will set

'x=Xcosﬂ—Zsin}.; 2z = XsinA + Zcosi
uy = U cos; w, = Usini. ' (86)
Using the transformed potential
®(X,y,2,t) = P (xcosd +zsinky, — sind + 2 _cos'l, t) = Dz, 4,2 ) | (87)
Equation (85) then takes on the simpler form
L U’ a’qn 0, a’¢1_2_§ Pp, _ 100
9X3% ' 9y? FYA 2 oXot ¢ at“,' (88)
= f(X cos/l — Zsind,y, XsinA + Z cosk, t)= F(X,y, 2,1,
The solution of (88) is known and equals [1]
DX, y,2Z,t) = ———fff X'y Z’t+ﬂz,(X X)—ﬂa )dX’dy dz’
where ®)
D=[X—-XP+ply—yP+Z-27 ﬂ"i]?’z-; o
=1 — UYed =1 — (ud + wd)e - ‘ )

In Equation (89), the integration must be extended over the range (58)] , in which F

is different from zero. From (89) we also have

@(x,y,z,t)——4nfff !, y Z, ‘+ﬁaa(“’ ’)—}-IBa ,(z—z’)—ﬁ—)dxdydz
(B) . o (90)

1/2
where b — | —w’>’(1 ~H)re—er(-3) AR —x') @ —]",
0

or using cylindrical coordinates and wdt = — de, --

1 1 Lo, ’ N

O, 1,0 00) = — 5~ ZHa g0 — & — ) =
4n D : - prey
() (9

ﬂ’ 9,(rsnntp—r sm<p')+ﬁa )r'dr’dq;'daéf
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where

D=[(x—-£c')’(l—%%)+( _Z—é’)(rz+r’2—2rr’éos(<p—¢p'))— | (91)

C e
(rcos<p——r cos<p)“‘+2u° 0 (@ — )(rsin(p—r’sinq)’)] -

From Equation (91) we can now determine the basic solution 450] for treating the rotor
flow. This is the solution for a source element of intensity 9(5% %o)] rotating at

the angular velocity ¢ and which has_vthe instantaneous position % = kyy, r= -'9;’

P =% +2|. 1In this special case, we have
/(x v\ %)—q(a,x,%)é(x-klx)—a(r —a)a(,p '—%—x)\

Using elementary calculations (see [1], page 110) we obtain the following from /307
Equation (91): '

. | © t, w D,
Po(@, 1, @, @o) = — HQ("» 190 = grga @ — k) = ﬁa ,(r sin p — s i g) + B coo) X
' wyirs ' rs ul
"X [Do (l ——‘;’%coslo‘o) c;a (l cf) sin (¢ — 6p) +
' o 0
\

: ’ w38 W W8 Uy w, -1
' —gﬂsmao(rcosq)-—.scosoo)—i-ﬂ o 9 °(x—lclx)cosao] ;

thie o

here Cwu ' D, | ' 92
W 60___%_*_}:_32_?%(3, kyx) — ﬂ"‘ 2(rmnqp—-ansmao)+ﬁac; (92)

1)0=[(w-—k1x)3(1 —%)—{—(l ——g—)(r2 +82—2rscos((p—ao)) —
w;

—-—;——(rcosqa — scosgy)? 4 2

0 0

o W,

12
(@ —ky x) (rsing —ss_inoo)] .

Just as in normal propeller acoustics, the pressure field p radiated by the
pressure jump or the lift distribution at the rotating blades can be obtained by a
dipole covering corresponding to this pressure jump along the blades. This is be-
cause, according to Equations (84) and (85), p also satisfies a wave equation of

the type (85). This model corresponds to the linearized listing wing theory.

In the present investigation we limited ourselves to the lifting line ;heory
(Sections 2 to 6). 1In this case, the aerodynamic force affecting the lifting line
(per unit ofllength in the radial direction) is represented by a radial dipole dis-
tribution. The dipole axes are perpendicular to the relative incident flow velocity

at the location of the lifting line. The unit vector in this dipole axis direction
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is apparently given by

L Wy Uy
.s+——cosq)o e,—;u—eq,,

ey =

,I l/(s_+_0(-)s %) :(27)2

In this way, from the basic solution (92) we obtain the pressure field p radiated

over all N rotor blades by the lift distribution (that is, by the pressure jump)

in the following form by dipole formation using (s, %)_\ as the dipole moment(g)
; _ . w, 2 ga-1e
;P T, @) = P, Y, 2, Po) = Pp — Zo [(8 + . 00 an) + a;i] R
b ‘ : e . :

T ' Iy

Uy 0

: X [(a + %d'cos (p,,) —a-a; _— ﬁ%] Il (s, 04) [D,, (1 ﬁ’ e cos o,.) +

: wrs UAYNE w s Wy Uy W

Rl e e ey — e 4 U5
| . , . _ 4

withi 45 _, _©% Dy . | (93)
g g,,_q;,,—mx ﬁ“‘ 2(rsm¢p—ssma,,)+ﬂac“ ; N

-1
Z cos a,,} ds;

’ + and ‘a2 . . -
! D..'=[x”(1‘T)Jﬁ(l_;)(”H*—?”cosw—vn)) :
: ‘ o/ I\ o/ . ] R
w) - )
—j?(rcosqa — 808 0y) +2

o Wo 1I2 .
x(rsmq) —asma,.) i

}? . (] . € L
: ] 3 .
oo B

! &% G

| ‘ ’ ’ oy

In order to form the derivatives with respect to x and we obtain the following /308
relationships by differentiating D,.\ and Gn\ with respect to %;¢| and then performing

eliminations:

' 8D Cwd wews : rewu, . UgWo 1
ax” = [:z: (1 -——c-:"— - -1’;;0—— cos o,.) + 2 gin (p — aa) —ij——-og (rsin g ‘8 sin Un?‘ Ve
0. _© :c.l._w._a" %% (1 gin —sslr;a)—ng] Lo . o
P Bie, ) e’ ¢ " \o Ne IR : .

! . ‘," ;. . ' o . e CLy e ":

\ 2]_)_'1=[xu°:0°rcog¢p +l—0,l(rcosq>—-scosa,,)rsmtp + , .

0% L o % ‘ o - TR (95)

S )
® %o 5in (¢p — o) (r cos g — 8 cos a,.)] e

0

.+ rs( 'uz)sm( —a)+
@ $=n

4

(9)In the lifting line theory we must set x=0| in Equation (92).
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. . \ o
~aa,. ﬂ:oc [mu°w r.cos ¢ + @(r/cos:p — éoos0p) reing 4 o

3 .
+ra(1-—--—)sm(<p—o,.)———D,. rcos«p]N , - (96)

; X 9 . o ,'
Ne=D”(1_wgosaﬂ) wrs(l—%:—)sin(q)—a,)-{-g}'.
i 0

e e
w8 W ‘ “w$§ g w,
D e sma,.(rcosrp—.scosa,. + T €08 Op -
DB » ﬁa ('0 ¢ .

When evaluating the integrands in formulas (93) for the target points of the
far field (in whiéh the radiated acoustic pressure field is of interest) no diffi-

culties are encountered, because all the integrands are continuous.

In order to obtain the velocity potential from Equation (93), we must integrate
the relationship (84). First, Equation (84) takes on the following form using the

transformation (86):

o oD
—[p(Xcos).—Zsml y,Xsml +Zcosl (po) po]—waq): —-UaX1
which has the well-known solution
e o ‘ / | l ‘Y . ) . .
¢1(X, Y, Z: ‘Po) ——T @(x: Y, %, wo) = - ﬁ—;_ [p (X' COSAI— Z Sinl, y, lX'SipA + I
. A (] . . i ‘

—0 - L : ‘
' ‘,+‘Zc0§2,¢po+%(X—X’))—Ipo]@X' L . ,:1

zcosA-+-zsind

UL [p(X'cos).—{-xsm“}.—zsm}.cos}. y,X sml—-
Qo , ) ‘

2 '

— xsindcos i +zcos }. @0 + U(x cosl + zsm/'l - X')) — Po]dX'

If we set
& cos A +zsind - X’ =g¢,‘
\
then we find the following clear result
=} .
L Yy — 0 -
P, 9 2, %) —_—@ : [p(? aP Z i AL L +,w) ...~z'g]dw (97)

T 0
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which gives the connection between the pressure field and the velocity potential.

If we now again consider the case of incompressible flow, then we find the /309

following from (93) and (97) if €o > | ;

Ry ™ ,
11 ¥ (s, @n + )
¢=——-4——7-t-w-——é"é) ff‘ wo 3 uo\’X
o oy (&4‘;;“”(¢n4‘¢0 A-QE)

u, 2 . . ' Wo -
X [(m—;l—)—o\w) +(.'l——,scoﬂ(q’n+‘l’))a+(z_asm(%+w) _Bw)] .

(98)

X [(e + 'f—';‘;’cos (rn +'y))) (m — %w) + %y sin (pa + ¥) —_ gg(z —-%’ 'p) cos (pn -+ 'I’)] dy ds .

Formula (98) exactly corresponds to the well-known (see [1], pagélligl_yblocity
potential of the linearized vortex lifting line theory of the helicopter rotor for

.h,=1mm)undk,==umm%, as well as for the wing circulation I'. This relationship is:

TT(3,q0) =} (c0 8 + wg cos ¢,)* + g 1°(8, o) -.\ (99)
Equation (99) corresponds to the KUTTA-JOUKOWSKI theorem. As stated above, the
dipole moment Iﬂ corresponds to the force per unit of length in the radial direction

along the lifting line.

Since according to the:solution of the boundary value integral equation in
Section 5, the blade circulation T' is assumed to be known, Equation (99) also

gives the dipole moment IT| required to calculate the acoustic far field.
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